direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C23×C10, C15⋊4C25, C30⋊4C24, C3⋊(C24×C10), C6⋊(C23×C10), (C23×C6)⋊7C10, (C2×C30)⋊15C23, (C23×C30)⋊11C2, (C22×C30)⋊24C22, (C22×C6)⋊8(C2×C10), (C2×C6)⋊4(C22×C10), SmallGroup(480,1211)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C23×C10 |
Subgroups: 2724 in 1496 conjugacy classes, 882 normal (10 characteristic)
C1, C2 [×15], C2 [×16], C3, C22 [×35], C22 [×120], C5, S3 [×16], C6 [×15], C23 [×15], C23 [×140], C10 [×15], C10 [×16], D6 [×120], C2×C6 [×35], C15, C24, C24 [×30], C2×C10 [×35], C2×C10 [×120], C22×S3 [×140], C22×C6 [×15], C5×S3 [×16], C30 [×15], C25, C22×C10 [×15], C22×C10 [×140], S3×C23 [×30], C23×C6, S3×C10 [×120], C2×C30 [×35], C23×C10, C23×C10 [×30], S3×C24, S3×C2×C10 [×140], C22×C30 [×15], C24×C10, S3×C22×C10 [×30], C23×C30, S3×C23×C10
Quotients:
C1, C2 [×31], C22 [×155], C5, S3, C23 [×155], C10 [×31], D6 [×15], C24 [×31], C2×C10 [×155], C22×S3 [×35], C5×S3, C25, C22×C10 [×155], S3×C23 [×15], S3×C10 [×15], C23×C10 [×31], S3×C24, S3×C2×C10 [×35], C24×C10, S3×C22×C10 [×15], S3×C23×C10
Generators and relations
G = < a,b,c,d,e,f | a2=b2=c2=d10=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
(1 231)(2 232)(3 233)(4 234)(5 235)(6 236)(7 237)(8 238)(9 239)(10 240)(11 45)(12 46)(13 47)(14 48)(15 49)(16 50)(17 41)(18 42)(19 43)(20 44)(21 40)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(51 206)(52 207)(53 208)(54 209)(55 210)(56 201)(57 202)(58 203)(59 204)(60 205)(61 216)(62 217)(63 218)(64 219)(65 220)(66 211)(67 212)(68 213)(69 214)(70 215)(71 226)(72 227)(73 228)(74 229)(75 230)(76 221)(77 222)(78 223)(79 224)(80 225)(81 176)(82 177)(83 178)(84 179)(85 180)(86 171)(87 172)(88 173)(89 174)(90 175)(91 186)(92 187)(93 188)(94 189)(95 190)(96 181)(97 182)(98 183)(99 184)(100 185)(101 196)(102 197)(103 198)(104 199)(105 200)(106 191)(107 192)(108 193)(109 194)(110 195)(111 146)(112 147)(113 148)(114 149)(115 150)(116 141)(117 142)(118 143)(119 144)(120 145)(121 156)(122 157)(123 158)(124 159)(125 160)(126 151)(127 152)(128 153)(129 154)(130 155)(131 166)(132 167)(133 168)(134 169)(135 170)(136 161)(137 162)(138 163)(139 164)(140 165)
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 165)(12 166)(13 167)(14 168)(15 169)(16 170)(17 161)(18 162)(19 163)(20 164)(21 160)(22 151)(23 152)(24 153)(25 154)(26 155)(27 156)(28 157)(29 158)(30 159)(31 126)(32 127)(33 128)(34 129)(35 130)(36 121)(37 122)(38 123)(39 124)(40 125)(41 136)(42 137)(43 138)(44 139)(45 140)(46 131)(47 132)(48 133)(49 134)(50 135)(51 86)(52 87)(53 88)(54 89)(55 90)(56 81)(57 82)(58 83)(59 84)(60 85)(61 96)(62 97)(63 98)(64 99)(65 100)(66 91)(67 92)(68 93)(69 94)(70 95)(71 106)(72 107)(73 108)(74 109)(75 110)(76 101)(77 102)(78 103)(79 104)(80 105)(141 236)(142 237)(143 238)(144 239)(145 240)(146 231)(147 232)(148 233)(149 234)(150 235)(171 206)(172 207)(173 208)(174 209)(175 210)(176 201)(177 202)(178 203)(179 204)(180 205)(181 216)(182 217)(183 218)(184 219)(185 220)(186 211)(187 212)(188 213)(189 214)(190 215)(191 226)(192 227)(193 228)(194 229)(195 230)(196 221)(197 222)(198 223)(199 224)(200 225)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 230)(12 221)(13 222)(14 223)(15 224)(16 225)(17 226)(18 227)(19 228)(20 229)(21 215)(22 216)(23 217)(24 218)(25 219)(26 220)(27 211)(28 212)(29 213)(30 214)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 121)(92 122)(93 123)(94 124)(95 125)(96 126)(97 127)(98 128)(99 129)(100 130)(101 131)(102 132)(103 133)(104 134)(105 135)(106 136)(107 137)(108 138)(109 139)(110 140)(141 171)(142 172)(143 173)(144 174)(145 175)(146 176)(147 177)(148 178)(149 179)(150 180)(151 181)(152 182)(153 183)(154 184)(155 185)(156 186)(157 187)(158 188)(159 189)(160 190)(161 191)(162 192)(163 193)(164 194)(165 195)(166 196)(167 197)(168 198)(169 199)(170 200)(201 231)(202 232)(203 233)(204 234)(205 235)(206 236)(207 237)(208 238)(209 239)(210 240)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170)(171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190)(191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230)(231 232 233 234 235 236 237 238 239 240)
(1 49 39)(2 50 40)(3 41 31)(4 42 32)(5 43 33)(6 44 34)(7 45 35)(8 46 36)(9 47 37)(10 48 38)(11 26 237)(12 27 238)(13 28 239)(14 29 240)(15 30 231)(16 21 232)(17 22 233)(18 23 234)(19 24 235)(20 25 236)(51 74 64)(52 75 65)(53 76 66)(54 77 67)(55 78 68)(56 79 69)(57 80 70)(58 71 61)(59 72 62)(60 73 63)(81 104 94)(82 105 95)(83 106 96)(84 107 97)(85 108 98)(86 109 99)(87 110 100)(88 101 91)(89 102 92)(90 103 93)(111 134 124)(112 135 125)(113 136 126)(114 137 127)(115 138 128)(116 139 129)(117 140 130)(118 131 121)(119 132 122)(120 133 123)(141 164 154)(142 165 155)(143 166 156)(144 167 157)(145 168 158)(146 169 159)(147 170 160)(148 161 151)(149 162 152)(150 163 153)(171 194 184)(172 195 185)(173 196 186)(174 197 187)(175 198 188)(176 199 189)(177 200 190)(178 191 181)(179 192 182)(180 193 183)(201 224 214)(202 225 215)(203 226 216)(204 227 217)(205 228 218)(206 229 219)(207 230 220)(208 221 211)(209 222 212)(210 223 213)
(1 176)(2 177)(3 178)(4 179)(5 180)(6 171)(7 172)(8 173)(9 174)(10 175)(11 100)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 105)(22 106)(23 107)(24 108)(25 109)(26 110)(27 101)(28 102)(29 103)(30 104)(31 191)(32 192)(33 193)(34 194)(35 195)(36 196)(37 197)(38 198)(39 199)(40 200)(41 181)(42 182)(43 183)(44 184)(45 185)(46 186)(47 187)(48 188)(49 189)(50 190)(51 141)(52 142)(53 143)(54 144)(55 145)(56 146)(57 147)(58 148)(59 149)(60 150)(61 161)(62 162)(63 163)(64 164)(65 165)(66 166)(67 167)(68 168)(69 169)(70 170)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)(81 231)(82 232)(83 233)(84 234)(85 235)(86 236)(87 237)(88 238)(89 239)(90 240)(111 201)(112 202)(113 203)(114 204)(115 205)(116 206)(117 207)(118 208)(119 209)(120 210)(121 221)(122 222)(123 223)(124 224)(125 225)(126 226)(127 227)(128 228)(129 229)(130 230)(131 211)(132 212)(133 213)(134 214)(135 215)(136 216)(137 217)(138 218)(139 219)(140 220)
G:=sub<Sym(240)| (1,231)(2,232)(3,233)(4,234)(5,235)(6,236)(7,237)(8,238)(9,239)(10,240)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,41)(18,42)(19,43)(20,44)(21,40)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(51,206)(52,207)(53,208)(54,209)(55,210)(56,201)(57,202)(58,203)(59,204)(60,205)(61,216)(62,217)(63,218)(64,219)(65,220)(66,211)(67,212)(68,213)(69,214)(70,215)(71,226)(72,227)(73,228)(74,229)(75,230)(76,221)(77,222)(78,223)(79,224)(80,225)(81,176)(82,177)(83,178)(84,179)(85,180)(86,171)(87,172)(88,173)(89,174)(90,175)(91,186)(92,187)(93,188)(94,189)(95,190)(96,181)(97,182)(98,183)(99,184)(100,185)(101,196)(102,197)(103,198)(104,199)(105,200)(106,191)(107,192)(108,193)(109,194)(110,195)(111,146)(112,147)(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)(120,145)(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)(128,153)(129,154)(130,155)(131,166)(132,167)(133,168)(134,169)(135,170)(136,161)(137,162)(138,163)(139,164)(140,165), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,165)(12,166)(13,167)(14,168)(15,169)(16,170)(17,161)(18,162)(19,163)(20,164)(21,160)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,158)(30,159)(31,126)(32,127)(33,128)(34,129)(35,130)(36,121)(37,122)(38,123)(39,124)(40,125)(41,136)(42,137)(43,138)(44,139)(45,140)(46,131)(47,132)(48,133)(49,134)(50,135)(51,86)(52,87)(53,88)(54,89)(55,90)(56,81)(57,82)(58,83)(59,84)(60,85)(61,96)(62,97)(63,98)(64,99)(65,100)(66,91)(67,92)(68,93)(69,94)(70,95)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(141,236)(142,237)(143,238)(144,239)(145,240)(146,231)(147,232)(148,233)(149,234)(150,235)(171,206)(172,207)(173,208)(174,209)(175,210)(176,201)(177,202)(178,203)(179,204)(180,205)(181,216)(182,217)(183,218)(184,219)(185,220)(186,211)(187,212)(188,213)(189,214)(190,215)(191,226)(192,227)(193,228)(194,229)(195,230)(196,221)(197,222)(198,223)(199,224)(200,225), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,230)(12,221)(13,222)(14,223)(15,224)(16,225)(17,226)(18,227)(19,228)(20,229)(21,215)(22,216)(23,217)(24,218)(25,219)(26,220)(27,211)(28,212)(29,213)(30,214)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(151,181)(152,182)(153,183)(154,184)(155,185)(156,186)(157,187)(158,188)(159,189)(160,190)(161,191)(162,192)(163,193)(164,194)(165,195)(166,196)(167,197)(168,198)(169,199)(170,200)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,49,39)(2,50,40)(3,41,31)(4,42,32)(5,43,33)(6,44,34)(7,45,35)(8,46,36)(9,47,37)(10,48,38)(11,26,237)(12,27,238)(13,28,239)(14,29,240)(15,30,231)(16,21,232)(17,22,233)(18,23,234)(19,24,235)(20,25,236)(51,74,64)(52,75,65)(53,76,66)(54,77,67)(55,78,68)(56,79,69)(57,80,70)(58,71,61)(59,72,62)(60,73,63)(81,104,94)(82,105,95)(83,106,96)(84,107,97)(85,108,98)(86,109,99)(87,110,100)(88,101,91)(89,102,92)(90,103,93)(111,134,124)(112,135,125)(113,136,126)(114,137,127)(115,138,128)(116,139,129)(117,140,130)(118,131,121)(119,132,122)(120,133,123)(141,164,154)(142,165,155)(143,166,156)(144,167,157)(145,168,158)(146,169,159)(147,170,160)(148,161,151)(149,162,152)(150,163,153)(171,194,184)(172,195,185)(173,196,186)(174,197,187)(175,198,188)(176,199,189)(177,200,190)(178,191,181)(179,192,182)(180,193,183)(201,224,214)(202,225,215)(203,226,216)(204,227,217)(205,228,218)(206,229,219)(207,230,220)(208,221,211)(209,222,212)(210,223,213), (1,176)(2,177)(3,178)(4,179)(5,180)(6,171)(7,172)(8,173)(9,174)(10,175)(11,100)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,101)(28,102)(29,103)(30,104)(31,191)(32,192)(33,193)(34,194)(35,195)(36,196)(37,197)(38,198)(39,199)(40,200)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,161)(62,162)(63,163)(64,164)(65,165)(66,166)(67,167)(68,168)(69,169)(70,170)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,231)(82,232)(83,233)(84,234)(85,235)(86,236)(87,237)(88,238)(89,239)(90,240)(111,201)(112,202)(113,203)(114,204)(115,205)(116,206)(117,207)(118,208)(119,209)(120,210)(121,221)(122,222)(123,223)(124,224)(125,225)(126,226)(127,227)(128,228)(129,229)(130,230)(131,211)(132,212)(133,213)(134,214)(135,215)(136,216)(137,217)(138,218)(139,219)(140,220)>;
G:=Group( (1,231)(2,232)(3,233)(4,234)(5,235)(6,236)(7,237)(8,238)(9,239)(10,240)(11,45)(12,46)(13,47)(14,48)(15,49)(16,50)(17,41)(18,42)(19,43)(20,44)(21,40)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(51,206)(52,207)(53,208)(54,209)(55,210)(56,201)(57,202)(58,203)(59,204)(60,205)(61,216)(62,217)(63,218)(64,219)(65,220)(66,211)(67,212)(68,213)(69,214)(70,215)(71,226)(72,227)(73,228)(74,229)(75,230)(76,221)(77,222)(78,223)(79,224)(80,225)(81,176)(82,177)(83,178)(84,179)(85,180)(86,171)(87,172)(88,173)(89,174)(90,175)(91,186)(92,187)(93,188)(94,189)(95,190)(96,181)(97,182)(98,183)(99,184)(100,185)(101,196)(102,197)(103,198)(104,199)(105,200)(106,191)(107,192)(108,193)(109,194)(110,195)(111,146)(112,147)(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)(120,145)(121,156)(122,157)(123,158)(124,159)(125,160)(126,151)(127,152)(128,153)(129,154)(130,155)(131,166)(132,167)(133,168)(134,169)(135,170)(136,161)(137,162)(138,163)(139,164)(140,165), (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,165)(12,166)(13,167)(14,168)(15,169)(16,170)(17,161)(18,162)(19,163)(20,164)(21,160)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,158)(30,159)(31,126)(32,127)(33,128)(34,129)(35,130)(36,121)(37,122)(38,123)(39,124)(40,125)(41,136)(42,137)(43,138)(44,139)(45,140)(46,131)(47,132)(48,133)(49,134)(50,135)(51,86)(52,87)(53,88)(54,89)(55,90)(56,81)(57,82)(58,83)(59,84)(60,85)(61,96)(62,97)(63,98)(64,99)(65,100)(66,91)(67,92)(68,93)(69,94)(70,95)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(141,236)(142,237)(143,238)(144,239)(145,240)(146,231)(147,232)(148,233)(149,234)(150,235)(171,206)(172,207)(173,208)(174,209)(175,210)(176,201)(177,202)(178,203)(179,204)(180,205)(181,216)(182,217)(183,218)(184,219)(185,220)(186,211)(187,212)(188,213)(189,214)(190,215)(191,226)(192,227)(193,228)(194,229)(195,230)(196,221)(197,222)(198,223)(199,224)(200,225), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,230)(12,221)(13,222)(14,223)(15,224)(16,225)(17,226)(18,227)(19,228)(20,229)(21,215)(22,216)(23,217)(24,218)(25,219)(26,220)(27,211)(28,212)(29,213)(30,214)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,121)(92,122)(93,123)(94,124)(95,125)(96,126)(97,127)(98,128)(99,129)(100,130)(101,131)(102,132)(103,133)(104,134)(105,135)(106,136)(107,137)(108,138)(109,139)(110,140)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(151,181)(152,182)(153,183)(154,184)(155,185)(156,186)(157,187)(158,188)(159,189)(160,190)(161,191)(162,192)(163,193)(164,194)(165,195)(166,196)(167,197)(168,198)(169,199)(170,200)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190)(191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230)(231,232,233,234,235,236,237,238,239,240), (1,49,39)(2,50,40)(3,41,31)(4,42,32)(5,43,33)(6,44,34)(7,45,35)(8,46,36)(9,47,37)(10,48,38)(11,26,237)(12,27,238)(13,28,239)(14,29,240)(15,30,231)(16,21,232)(17,22,233)(18,23,234)(19,24,235)(20,25,236)(51,74,64)(52,75,65)(53,76,66)(54,77,67)(55,78,68)(56,79,69)(57,80,70)(58,71,61)(59,72,62)(60,73,63)(81,104,94)(82,105,95)(83,106,96)(84,107,97)(85,108,98)(86,109,99)(87,110,100)(88,101,91)(89,102,92)(90,103,93)(111,134,124)(112,135,125)(113,136,126)(114,137,127)(115,138,128)(116,139,129)(117,140,130)(118,131,121)(119,132,122)(120,133,123)(141,164,154)(142,165,155)(143,166,156)(144,167,157)(145,168,158)(146,169,159)(147,170,160)(148,161,151)(149,162,152)(150,163,153)(171,194,184)(172,195,185)(173,196,186)(174,197,187)(175,198,188)(176,199,189)(177,200,190)(178,191,181)(179,192,182)(180,193,183)(201,224,214)(202,225,215)(203,226,216)(204,227,217)(205,228,218)(206,229,219)(207,230,220)(208,221,211)(209,222,212)(210,223,213), (1,176)(2,177)(3,178)(4,179)(5,180)(6,171)(7,172)(8,173)(9,174)(10,175)(11,100)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,105)(22,106)(23,107)(24,108)(25,109)(26,110)(27,101)(28,102)(29,103)(30,104)(31,191)(32,192)(33,193)(34,194)(35,195)(36,196)(37,197)(38,198)(39,199)(40,200)(41,181)(42,182)(43,183)(44,184)(45,185)(46,186)(47,187)(48,188)(49,189)(50,190)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,161)(62,162)(63,163)(64,164)(65,165)(66,166)(67,167)(68,168)(69,169)(70,170)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)(81,231)(82,232)(83,233)(84,234)(85,235)(86,236)(87,237)(88,238)(89,239)(90,240)(111,201)(112,202)(113,203)(114,204)(115,205)(116,206)(117,207)(118,208)(119,209)(120,210)(121,221)(122,222)(123,223)(124,224)(125,225)(126,226)(127,227)(128,228)(129,229)(130,230)(131,211)(132,212)(133,213)(134,214)(135,215)(136,216)(137,217)(138,218)(139,219)(140,220) );
G=PermutationGroup([(1,231),(2,232),(3,233),(4,234),(5,235),(6,236),(7,237),(8,238),(9,239),(10,240),(11,45),(12,46),(13,47),(14,48),(15,49),(16,50),(17,41),(18,42),(19,43),(20,44),(21,40),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(51,206),(52,207),(53,208),(54,209),(55,210),(56,201),(57,202),(58,203),(59,204),(60,205),(61,216),(62,217),(63,218),(64,219),(65,220),(66,211),(67,212),(68,213),(69,214),(70,215),(71,226),(72,227),(73,228),(74,229),(75,230),(76,221),(77,222),(78,223),(79,224),(80,225),(81,176),(82,177),(83,178),(84,179),(85,180),(86,171),(87,172),(88,173),(89,174),(90,175),(91,186),(92,187),(93,188),(94,189),(95,190),(96,181),(97,182),(98,183),(99,184),(100,185),(101,196),(102,197),(103,198),(104,199),(105,200),(106,191),(107,192),(108,193),(109,194),(110,195),(111,146),(112,147),(113,148),(114,149),(115,150),(116,141),(117,142),(118,143),(119,144),(120,145),(121,156),(122,157),(123,158),(124,159),(125,160),(126,151),(127,152),(128,153),(129,154),(130,155),(131,166),(132,167),(133,168),(134,169),(135,170),(136,161),(137,162),(138,163),(139,164),(140,165)], [(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,165),(12,166),(13,167),(14,168),(15,169),(16,170),(17,161),(18,162),(19,163),(20,164),(21,160),(22,151),(23,152),(24,153),(25,154),(26,155),(27,156),(28,157),(29,158),(30,159),(31,126),(32,127),(33,128),(34,129),(35,130),(36,121),(37,122),(38,123),(39,124),(40,125),(41,136),(42,137),(43,138),(44,139),(45,140),(46,131),(47,132),(48,133),(49,134),(50,135),(51,86),(52,87),(53,88),(54,89),(55,90),(56,81),(57,82),(58,83),(59,84),(60,85),(61,96),(62,97),(63,98),(64,99),(65,100),(66,91),(67,92),(68,93),(69,94),(70,95),(71,106),(72,107),(73,108),(74,109),(75,110),(76,101),(77,102),(78,103),(79,104),(80,105),(141,236),(142,237),(143,238),(144,239),(145,240),(146,231),(147,232),(148,233),(149,234),(150,235),(171,206),(172,207),(173,208),(174,209),(175,210),(176,201),(177,202),(178,203),(179,204),(180,205),(181,216),(182,217),(183,218),(184,219),(185,220),(186,211),(187,212),(188,213),(189,214),(190,215),(191,226),(192,227),(193,228),(194,229),(195,230),(196,221),(197,222),(198,223),(199,224),(200,225)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,230),(12,221),(13,222),(14,223),(15,224),(16,225),(17,226),(18,227),(19,228),(20,229),(21,215),(22,216),(23,217),(24,218),(25,219),(26,220),(27,211),(28,212),(29,213),(30,214),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,121),(92,122),(93,123),(94,124),(95,125),(96,126),(97,127),(98,128),(99,129),(100,130),(101,131),(102,132),(103,133),(104,134),(105,135),(106,136),(107,137),(108,138),(109,139),(110,140),(141,171),(142,172),(143,173),(144,174),(145,175),(146,176),(147,177),(148,178),(149,179),(150,180),(151,181),(152,182),(153,183),(154,184),(155,185),(156,186),(157,187),(158,188),(159,189),(160,190),(161,191),(162,192),(163,193),(164,194),(165,195),(166,196),(167,197),(168,198),(169,199),(170,200),(201,231),(202,232),(203,233),(204,234),(205,235),(206,236),(207,237),(208,238),(209,239),(210,240)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170),(171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190),(191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230),(231,232,233,234,235,236,237,238,239,240)], [(1,49,39),(2,50,40),(3,41,31),(4,42,32),(5,43,33),(6,44,34),(7,45,35),(8,46,36),(9,47,37),(10,48,38),(11,26,237),(12,27,238),(13,28,239),(14,29,240),(15,30,231),(16,21,232),(17,22,233),(18,23,234),(19,24,235),(20,25,236),(51,74,64),(52,75,65),(53,76,66),(54,77,67),(55,78,68),(56,79,69),(57,80,70),(58,71,61),(59,72,62),(60,73,63),(81,104,94),(82,105,95),(83,106,96),(84,107,97),(85,108,98),(86,109,99),(87,110,100),(88,101,91),(89,102,92),(90,103,93),(111,134,124),(112,135,125),(113,136,126),(114,137,127),(115,138,128),(116,139,129),(117,140,130),(118,131,121),(119,132,122),(120,133,123),(141,164,154),(142,165,155),(143,166,156),(144,167,157),(145,168,158),(146,169,159),(147,170,160),(148,161,151),(149,162,152),(150,163,153),(171,194,184),(172,195,185),(173,196,186),(174,197,187),(175,198,188),(176,199,189),(177,200,190),(178,191,181),(179,192,182),(180,193,183),(201,224,214),(202,225,215),(203,226,216),(204,227,217),(205,228,218),(206,229,219),(207,230,220),(208,221,211),(209,222,212),(210,223,213)], [(1,176),(2,177),(3,178),(4,179),(5,180),(6,171),(7,172),(8,173),(9,174),(10,175),(11,100),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,105),(22,106),(23,107),(24,108),(25,109),(26,110),(27,101),(28,102),(29,103),(30,104),(31,191),(32,192),(33,193),(34,194),(35,195),(36,196),(37,197),(38,198),(39,199),(40,200),(41,181),(42,182),(43,183),(44,184),(45,185),(46,186),(47,187),(48,188),(49,189),(50,190),(51,141),(52,142),(53,143),(54,144),(55,145),(56,146),(57,147),(58,148),(59,149),(60,150),(61,161),(62,162),(63,163),(64,164),(65,165),(66,166),(67,167),(68,168),(69,169),(70,170),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160),(81,231),(82,232),(83,233),(84,234),(85,235),(86,236),(87,237),(88,238),(89,239),(90,240),(111,201),(112,202),(113,203),(114,204),(115,205),(116,206),(117,207),(118,208),(119,209),(120,210),(121,221),(122,222),(123,223),(124,224),(125,225),(126,226),(127,227),(128,228),(129,229),(130,230),(131,211),(132,212),(133,213),(134,214),(135,215),(136,216),(137,217),(138,218),(139,219),(140,220)])
Matrix representation ►G ⊆ GL5(𝔽31)
30 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 30 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 0 | 30 |
30 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 27 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 30 |
0 | 0 | 0 | 1 | 30 |
1 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 |
0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
G:=sub<GL(5,GF(31))| [30,0,0,0,0,0,1,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,30],[1,0,0,0,0,0,1,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,30,0,0,0,0,0,30],[30,0,0,0,0,0,30,0,0,0,0,0,1,0,0,0,0,0,27,0,0,0,0,0,27],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,30,30],[1,0,0,0,0,0,30,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,1,0] >;
240 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 3 | 5A | 5B | 5C | 5D | 6A | ··· | 6O | 10A | ··· | 10BH | 10BI | ··· | 10DT | 15A | 15B | 15C | 15D | 30A | ··· | 30BH |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 5 | 5 | 5 | 5 | 6 | ··· | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 15 | 15 | 15 | 15 | 30 | ··· | 30 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
240 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C5 | C10 | C10 | S3 | D6 | C5×S3 | S3×C10 |
kernel | S3×C23×C10 | S3×C22×C10 | C23×C30 | S3×C24 | S3×C23 | C23×C6 | C23×C10 | C22×C10 | C24 | C23 |
# reps | 1 | 30 | 1 | 4 | 120 | 4 | 1 | 15 | 4 | 60 |
In GAP, Magma, Sage, TeX
S_3\times C_2^3\times C_{10}
% in TeX
G:=Group("S3xC2^3xC10");
// GroupNames label
G:=SmallGroup(480,1211);
// by ID
G=gap.SmallGroup(480,1211);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-5,-3,15686]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^10=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations